
 

Version 1.0
Copyright © 2016

ESP8266 Reset Causes
and Common Fatal
Exception Causes

About This Guide
This guide introduces the methods to identify the causes of ESP8266 reset and common
Fatal exceptions.
The guide structure is as follows:

Release Notes

Chapter Title Content

Chapter 1 Reset Causes Introduction to two methods of identifying ESP8266 reset
causes: ROM code and user program.

Chapter 2 Common Fatal Exceptions
and Causes

Introduction to common ESP8266 Fatal exceptions and their
causes.

Date Version Release notes

2016.08 V1.0 Initial Release.

Table of Contents
1. Reset Causes	 1
..

1.1. Identifying Reset Cause in ROM Code	 1
..

1.2. Identifying Reset Cause Using User Program	 1
..

2. Common Fatal Exceptions and Causes	 3...

!

1. Reset Causes

1. Reset Causes
1.1. Identifying Reset Cause in ROM Code

Each time ESP8266 reboots, ROM code will print out the number for the reset cause, as
the following figure shows. Users can verify the cause of the reset based on the number.
Use this debugging method when you can not start the user program and need to analyze
the cause of the reset.

!
The following table shows reset causes printed in ROM code.

1.2. Identifying Reset Cause Using User Program
Users can also identify the reset cause by adding application layer program, which provides
relatively comprehensive analysis of the reset cause. Use this method when garbled output
is printed where crash occurs and can not be debugged.
Add the following code segment:

struct rst_info *rtc_info = system_get_rst_info();

os_printf("reset reason: %x\n", rtc_info->reason);

Table 1-1. Identifying Reset Cause in ROM Code

Rst cause No. Cause

0 Undefined

1 Power reboot

2 External reset or wake-up from Deep-sleep

4 Hardware WDT reset

⚠ Notice

The reboot state will not change after software WDT reset or software reset. For example, when the first reset
is caused by power reboot, rst cause number is 1. After software reset, the rst cause number will still be 1.

Espressif ! /!1 4 2016.08

!

1. Reset Causes

 if (rtc_info->reason == REASON_WDT_RST ||

 rtc_info->reason == REASON_EXCEPTION_RST ||

 rtc_info->reason == REASON_SOFT_WDT_RST) {

 if (rtc_info->reason == REASON_EXCEPTION_RST) {

 os_printf("Fatal exception (%d):\n", rtc_info-
>exccause);

 }

 os_printf("epc1=0x%08x, epc2=0x%08x, epc3=0x%08x,
excvaddr=0x%08x, depc=0x%08x\n",

 rtc_info->epc1, rtc_info->epc2, rtc_info-
>epc3, rtc_info->excvaddr, rtc_info->depc);//The address of the last
crash is printed, which is used to debug garbled output.

 }

For information on system_get_rst_info() and associated data structures, please refer
to ESP8266 Non-OS SDK API Reference and ESP8266 RTOS SDK API Reference (link:
espressif.com/en/support/download/documents).
The following table shows the reset causes identified by adding user program.

Table 1-2. Identifying Reset Cause Using User Program

Rst cause No. Cause GPIO state

0 Power reboot Changed

1 Hardware WDT reset Changed

2 Fatal exception Unchanged

3 Software watchdog reset Unchanged

4 Software reset Unchanged

5 Deep-sleep Changed

6 Hardware reset Changed

Espressif ! /!2 4 2016.08

http://espressif.com/en/support/download/documents

!

2. Common Fatal Exceptions and Causes

2. Common Fatal Exceptions and
Causes

When a program crashes, users can debug the crash based on the Fatal exception
number. The following table shows common Fatal exceptions and their possible causes.

For example:

Fatal exception (28):  
epc1=0x4025bfa6, epc2=0x00000000, epc3=0x00000000,
excvaddr=0x0000000f, depc=0x00000000

• If user1.1024.new.2.bin is used, verify the exception address “0x4025bfa6” in
user1.1024.new.2.S file. Add print to user’s code to debug the Fatal exception.

• If eagle.irom0text.bin is used, verify the cause of the Fatal exception in eagle.S file.
• If the address of exception can not be found, it means that the crash occurs during

an interrupt. Or, there is a code problem in ROM, such as
- 4000e190 <memset>

- 4000df48 <memcpy>

- 4000dea8 <memcmp>

- 4000de84 <bzero>

- 4000e1e0 <strstr>

Table 2-1. Common Fatal Exceptions and Causes

Fatal exception No. Description Possible Causes

0 Invalid command
1. Damaged BIN binaries
2. Wild function pointers

6 Division by zero Division by zero

9 Unaligned read/write operation
addresses

1. Unaligned read/write Cache addresses
2. Wild function pointers

28/29 Access to invalid address
1. Access to Cache after it is turned off
2. Wild function pointers

Espressif ! /!3 4 2016.08

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without
notice.
THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT
OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.
All liability, including liability for infringement of any proprietary rights, relating to use of
information in this document is disclaimed. No licenses express or implied, by estoppel or
otherwise, to any intellectual property rights are granted herein.
The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is
a registered trademark of Bluetooth SIG.
All trade names, trademarks and registered trademarks mentioned in this document are
property of their respective owners, and are hereby acknowledged.
Copyright © 2016 Espressif Inc. All rights reserved.

Espressif IOT Team

www.espressif.com

�

http://www.espressif.com

